

SEMICONDUCTOR®

October 2006

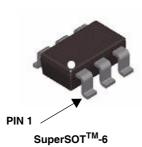
FDFC2P100 Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

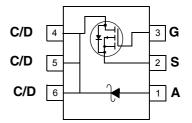
-20V, -3A, 150mΩ

Features

- Max $r_{DS(on)}$ = 150m Ω at V_{GS} = -4.5V, I_D = -3.0A
- Max $r_{DS(on)}$ = 200m Ω at V_{GS} = -2.5V, I_D = -2.2A
- Low Gate Charge (3.4nC typ)
- Compact industry standard SuperSOTTM-6 package

Schottky:


- V_F < 0.45 V at I_F = 1A
- RoHS Compliant



General Description

The FDFC2P100 combine the exceptional performance of Fairchild's PowerTrench MOSFET technology with a very low forward voltage drop Schottky barrier rectifier in an SSOT-6 package.

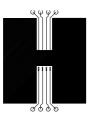
This device is designed specifically as a single package solution for DC to DC converters. It features a fast switching, low gate charge MOSFET with very low on-state resistance. Significant improvement of Thermal Characteristics and Power Dissipation via replacement of independently connected Schottky with internal connection of Schottky Diode Cathode pn to P-Channel PowerTrench MosFET Drain pin.

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units	
V _{DS}	Drain to Source Voltage		-20	V
V _{GS}	Gate to Source Voltage		±12	V
1	Drain Current -Continuous	(Note 1a)	-3	•
D	-Pulsed		-6	Α
D	Power Dissipation	(Note 1a)	1.5	W
P _D		(Note 1b)	0.8	vv
V _{RRM}	Schotty Repetitive Peak Reverse Voltage		20	V
lo	Schotty Average Forward Current	(Note 1a)	1	А
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

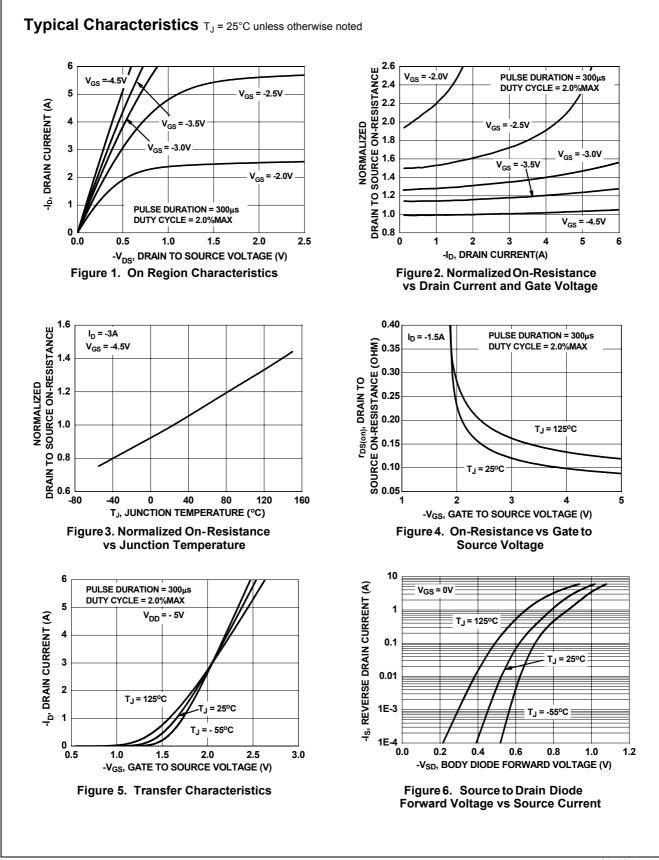
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	87	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	166	C/W


Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
.100	FDFC2P100	SSOT-6	7"	8mm	3000units

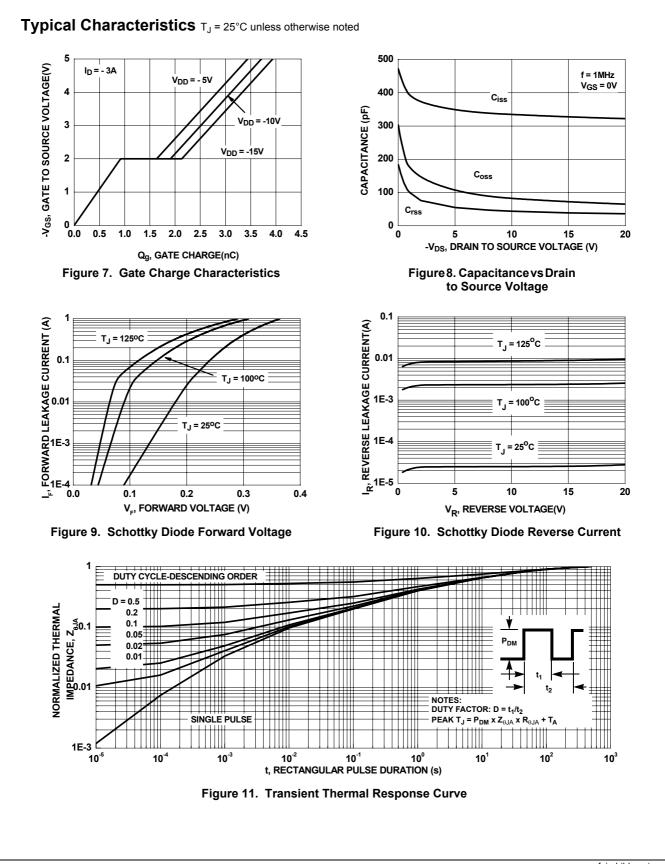
Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
Off Chara	cteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = -250μA, V _G	s = 0V	-20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250\mu A$, refe			-12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0V, V _{DS} =	-16V			-1	μA
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±12V, V_{DS}	_S = 0V			±100	μA
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = -$	250μΑ	-0.6	-0.9	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \mu A$, refer			3		mV/°C
-		V_{GS} = -4.5V, I_{D} =	-3.0A		95	150	
r _{DS(on)}	Drain to Source On-Resistance	V _{GS} = -2.5V, I _D = -2.2A			150	200	mΩ
		V_{GS} = -4.5V, I_D =	-3.0A, T _J = 125°C		130	252	
9 _{FS}	Forward Transconductance	$V_{DS} = -5V, I_D = -3$	3.0A		5.4		S
Dynamic	Characteristics						
C _{iss}	Input Capacitance				335	445	pF
C _{oss}	Output Capacitance	V _{DS} = -10V, V _{GS} = 0V, f = 1MHz			80	105	pF
C _{rss}	Reverse Transfer Capacitance				40	60	pF
Rg	Gate Resistance	f = 1MHz			6		Ω
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time				9	16	ns
t _r	Rise Time	$V_{DD} = -10V, I_D = -3.0A$ $V_{GS} = -4.5V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } -10V$ $V_{DD} = -4.5V$ $I_D = -3.0A$			11	20	ns
t _{d(off)}	Turn-Off Delay Time				12	22	ns
t _f	Fall Time				4	8	ns
Q _{g(TOT)}	Total Gate Charge at -10V				3.4	4.7	nC
Q _{gs}	Gate to Source Gate Charge				0.9		nC
Q _{gd}	Gate to Drain "Miller" Charge				1.0		nC
Drain-Soເ	urce Diode Characteristics						
I _S	Maximum Continuous Drain tio Source Did	ode forward Current				-1.2	Α
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0V, I _S = -1.2A (Note 2)			-0.8	-1.2	V
t _{rr}	Reverse Recovery Time				17		ns
Q _{rr}	Reverse Recovery Charge	I _F = -3.0A, di/dt = 100A/μs			5		nC
Schottky	Diode Characteristics						
,		$\lambda = 20 \lambda$	T _J = 25°C		26	400	μA
	Reverse Leakage	$V_{\rm R} = 200$ $T_{\rm J} = 100$ $V_{\rm R} = 100$ $T_{\rm J} = 25^{\circ}$	T _J = 100C		2.7	20	mA
I _R			T _J = 25°C		23	200	μA
			T _J = 100°C		2.5	10	mA
		$T_F = 500 \text{mA}$ $T_J = 100^{\circ}$ $T_J = 25^{\circ} \text{C}$	T _J = 25°C		0.31	0.4	
V _F	Forward Voltage		T _J = 100°C		0.24	0.35	v
- F			T _J = 25°C		0.37	0.45	ľ
			T _J = 100°C		0.3	0.42	

www.fairchildsemi.com


Notes: 1: $R_{\theta,JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 87°C/W when mounted on a 1in² pad of 2 oz copper

 $\langle \psi \psi \psi \rangle$ b) 166°C/W when mounted on a minimun pad ~~~~


2: Pulse Test: Pulse Width <300 ms, Duty Cycle < 2.0%

FDFC2P100 Rev.C (W)

www.fairchildsemi.com

FDFC2P100 Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

www.fairchildsemi.com

FDFC2P100 Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

FAIRCHILD

SEMICONDUCTOR

FAIRCHILD SEMICONDUCTOR TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™		SILENT SWITCHER®	UniFET™ UltraFET [®]
ActiveArray™	GlobalOptoisolator™ CTO™	OCXPro™	SMART START™	
Bottomless™	GTO™	OPTOLOGIC®	SPM™	VCX™
Build it Now™	HiSeC™	OPTOPLANAR™	Stealth™	Wire™
CoolFET™	l ² C™	PACMAN™	SuperFET™	
CROSSVOLT™	<i>i-Lo</i> ™	POP™	SuperSOT™-3	
DOME™	ImpliedDisconnect [™]	Power247™	SuperSOT™-6	
EcoSPARK™	IntelliMAX™	PowerEdge™	SuperSOT™-8	
E ² CMOS™	ISOPLANAR™	PowerSaver™	SyncFET™	
EnSigna™	LittleFET™	PowerTrench [®]	TCM™	
FACT®	MICROCOUPLER™	QFET [®]	TinyBoost™	
FAST®	MicroFET™	QS™	TinyBuck™	
FASTr™	MicroPak™	QT Optoelectronics [™]	TinyPWM™	
FPS™	MICROWIRE™	Quiet Series [™]	TinyPower™	
FRFET™	MSX™	RapidConfigure™	TinyLogic [®]	
	MSXPro™	RapidConnect™	TINYOPTO™	
Across the board.	Around the world.™	µSerDes™	TruTranslation™	
The Power Franch	ise [®]	ScalarPump™	UHC [®]	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

Programmable Active Droop™

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.		